The Sharing Economy and Housing Affordability: Evidence from Airbnb

Davide Proserpio
University of Southern California

January 22, 2019
Brussels, Belgium

joint work with Kyle Barron (MIT & NBER), Edward Kung (UCLA)
What is the paper about?

Do home-sharing platforms such as Airbnb affect house prices and rental rates?
Important remarks

It is not a trivial question to answer
 • The housing market is affected by many factors
 • Local economy conditions
 • Gentrification
 • ...
 • Measuring Airbnb is not easy
Important remarks

It is not a trivial question to answer
 • The housing market is affected by many factors
 • Local economy conditions
 • Gentrification
 • ...
 • Measuring Airbnb is not easy

The answer is not obvious...it could be NO if:
 • The short-term rental market is very small compared to the long-term market
 • The market for short-term rentals is dominated by housing units that would have remained vacant in the absence of home-sharing
Roadmap of the paper

1. We develop a model of rental rates and house prices where landlords can substitute between long-term and short-term rental markets.

2. We test the predictions of the model using a comprehensive dataset of Airbnb listings in the US over a six years period (2011-2016).
Roadmap of the paper

1. We develop a model of rental rates and house prices where landlords can substitute between long-term and short-term rental markets.

2. We test the predictions of the model using a comprehensive dataset of Airbnb listings in the US over a six years period (2011-2016).
Model predictions

A home-sharing platform reduces the cost for landlords to participate in the short-term market.
Model predictions

A home-sharing platform reduces the cost for landlords to participate in the short-term market

1. Home-sharing increases the rental rate in the long-term market
Model predictions

A home-sharing platform reduces the cost for landlords to participate in the short-term market

1. Home-sharing increases the rental rate in the long-term market
2. Home-sharing increases house prices, but by a greater proportion than rental rates
Model predictions

A home-sharing platform reduces the cost for landlords to participate in the short-term market

1. Home-sharing increases the rental rate in the long-term market
2. Home-sharing increases house prices, but by a greater proportion than rental rates
3. The effect of home-sharing is larger when the share of owner-occupiers is lower
Roadmap of the paper

1. We develop a model of rental rates and house prices where landlords can substitute between long-term and short-term rental markets.

2. We test the predictions of the model using a comprehensive dataset of Airbnb listings, housing prices and rental rates (Zillow) in the US over a six years period (2011-2016).
Data: Airbnb

Snapshot of all Airbnb listings in the US (2011-2016)

• >1 million properties from 700,000 hosts
 • Including consumer-facing information such as location and creation date
• 18 million reviews
Data: Zillow

ZIP code – month house prices
 • Zillow Home Value Index (ZHVI): median transaction price for homes

ZIP code – month rental rates
 • Zillow Rent Index (ZRI): median monthly rental rate for homes
Data: Auxiliary data sources

- **Google trends** for the term “Airbnb”

- **Touristiness**
 - # of establishments in the food services and accommodation industry (NAICS code 72) at the ZIP code level

- **Local economy controls**
 - Median household income, population, share of 25-60 year olds with bachelors’ degrees or higher, employment rate, and owner-occupancy rate

- **Housing vacancy rates** at the Core Based Statistical Area (CBSA) level
Empirical strategy

We would like to estimate the following regression:

\[Y_{zct} = \beta \log \text{Airbnb}_{zct} + \gamma \log \text{Airbnb}_{zct} \times oorate_{zc} + \text{Controls} \]
Empirical strategy

We would like to estimate the following regression:

\[Y_{zct} = \beta \log \text{Airbnb}_{zct} + \gamma \log \text{Airbnb}_{zct} \times oorate_{zct} + \text{Controls} \]

log House prices, rental rates, or ratio price/rent
Empirical strategy

We would like to estimate the following regression:

\[
Y_{zct} = \beta \log \text{Airbnb}_{zct} + \gamma \log \text{Airbnb}_{zct} \times \text{oorate}_{zct} + \text{Controls}
\]

Airbnb supply

log House prices, rental rates, or ratio price/rent
Empirical strategy

We would like to estimate the following regression:

\[Y_{zct} = \beta \log \text{Airbnb}_{zct} + \gamma \log \text{Airbnb}_{zct} \times \text{oorate}_{zc} + \text{Controls} \]

- **Airbnb supply**
- Interaction Airbnb supply & owner-occupancy rate
- log House prices, rental rates, or ratio price/rent
We would like to estimate the following regression:

\[Y_{zct} = \beta \log \text{Airbnb}_{zct} + \gamma \log \text{Airbnb}_{zct} \times \text{oorate}_{zc} + \text{Controls} \]

where:
- \(Y_{zct} \) represents the dependent variable.
- \(\beta \) and \(\gamma \) are coefficients to be estimated.
- \(\log \text{Airbnb}_{zct} \) represents the logarithm of Airbnb supply in location \(zct \).
- \(\log \text{Airbnb}_{zct} \times \text{oorate}_{zc} \) represents the interaction term between Airbnb supply and owner-occupancy rate.
- Controls include log House prices, rental rates, or ratio price/rent.
“Randomizing” Airbnb entry

We use a technique known as instrumental variables to isolate the part of housing costs that is driven only by Airbnb.

In simple terms, we argue that:

• If a ZIP code is “touristy” (a lot of restaurants and bars) and if awareness for Airbnb increases...

• Then any change in Airbnb supply in that ZIP code is likely driven by an increase in demand for short-term rentals through Airbnb, rather than local economic conditions.
Results and economic significance

We find that Airbnb increases both rental rates and house prices.
Results and economic significance

We find that Airbnb increases both rental rates and house prices

Magnitude of the effect (TOP-100 CBSAs)

• 0.59% annual increase in US rental rates
• 0.82% annual increase in US house prices

Not trivial when compared with average housing market growth:

• 3.18% annual US rent growth
• 5.70% annual US house price growth
Mechanism: Reallocation of the housing stock

We show that the effect is partially driven by landlords switching from the long- to short-term market.

Airbnb supply is

- **Positively** correlated with “seasonal homes” (short-term market housing units are generally classified in this way)
- **Negatively** correlated with “vacant homes” (long-term market housing units are generally classified in this way)
Discussion & conclusions

Airbnb is affecting the housing market by increasing

• Rental rates by reducing long-term supply

• House prices by increasing the value of owning through two channels:
 1. Higher rental rates
 2. Extra income from the short-term rental market

Part of this effect can be explained by landlords switching from the long- to the short-term rental market
Discussion & conclusions

Cities
• Policy to limit the reallocation from long- to short-term market
• Occupancy tax on home sharers who rent the entire home for an extended period of time

Renters and home owners
• Not everyone is happy

Platforms
• More collaboration with cities
Thank you
Overview of the model

Housing market segmented into long-term market (which serves local residents) and short-term market (which serves visitors)

Landlords are either absentee landlords or owner-occupiers

- Absentee landlords choose to allocate housing to short-term or long-term rental market
- Owner-occupiers can still benefit from short-term market by renting unused capacity (i.e., extra rooms, while away on vacation, etc.)
Overview of the model

Rental rate in the **short-term** market determined by exogenous hotel sector

Rental rate in the **long-term** market determined by inverse demand curve of local residents

House price is the net present value of owning
Modeling Airbnb supply

Difficult to measure active supply because of stale vacancies (Fradkin et al. 2017)

- Main measure: Listing enters when it is created and never exit – cumulative supply (Zervas et al. 2017)
- Robustness check using alternative measures
 - Exploit reviews and create a Time To Live (TTL) for every listing
Modeling Airbnb supply

Difficult to measure active supply because of stale vacancies (Fradkin et al. 2017)

- Main measure: Listing enters when it is created and never exit – cumulative supply (Zervas et al. 2017)
- Robustness check using “active listings”

Note: This figure plots the number of Airbnb listings over time, using each of the 3 methods described in Table 1.
Results: The effect of Airbnb on rental rates and house prices

<table>
<thead>
<tr>
<th></th>
<th>Rental rates</th>
<th>House Prices</th>
<th>Price/Rent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>ln Airbnb Listings</td>
<td>0.046***</td>
<td>0.043***</td>
<td>0.079***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>... × Owner-occupancy Rate (2010)</td>
<td>−0.038***</td>
<td>−0.035***</td>
<td>−0.073***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>ln Population</td>
<td>0.042***</td>
<td></td>
<td>0.064***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td></td>
<td>(0.010)</td>
</tr>
<tr>
<td>ln Median HH Income</td>
<td>0.017***</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College Share</td>
<td>0.057***</td>
<td>0.061***</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>Employment Rate</td>
<td>0.036***</td>
<td>0.070***</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.020)</td>
<td></td>
</tr>
<tr>
<td>Zipcode FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CBSA-year-month FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Instrumental Variable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>649841</td>
<td>649697</td>
<td>572858</td>
</tr>
<tr>
<td>R²</td>
<td>0.991</td>
<td>0.991</td>
<td>0.996</td>
</tr>
<tr>
<td>Kleibergen-Paap F Statistic</td>
<td>817.3</td>
<td>804.2</td>
<td>660.7</td>
</tr>
</tbody>
</table>

Significance levels: * p<0.1, ** p<0.05, *** p<0.01
Results: The effect of Airbnb on rental rates and house prices

<table>
<thead>
<tr>
<th></th>
<th>Rental rates</th>
<th>House Prices</th>
<th>Price/Rent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>ln Airbnb Listings</td>
<td>0.046***</td>
<td>0.043***</td>
<td>0.079***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>... × Owner-occupancy Rate (2010)</td>
<td>-0.038***</td>
<td>-0.035***</td>
<td>-0.073***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>ln Population</td>
<td>0.042***</td>
<td></td>
<td>0.064***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td></td>
<td>(0.010)</td>
</tr>
<tr>
<td>ln Median HH Income</td>
<td>0.017***</td>
<td></td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td>(0.008)</td>
</tr>
<tr>
<td>College Share</td>
<td>0.057***</td>
<td></td>
<td>0.061***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td></td>
<td>(0.018)</td>
</tr>
<tr>
<td>Employment Rate</td>
<td>0.036***</td>
<td></td>
<td>0.070***</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td></td>
<td>(0.020)</td>
</tr>
<tr>
<td>Zipcode FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CBSA-year-month FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Instrumental Variable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>649841</td>
<td>649697</td>
<td>572858</td>
</tr>
<tr>
<td>R^2</td>
<td>0.991</td>
<td>0.991</td>
<td>0.996</td>
</tr>
<tr>
<td>Kleibergen-Paap F Statistic</td>
<td>817.3</td>
<td>804.2</td>
<td>660.7</td>
</tr>
</tbody>
</table>

Significance levels: * p<0.1, ** p<0.05, *** p<0.01.